3.1002 \(\int \frac{1}{(c+a^2 c x^2)^3 \tan ^{-1}(a x)^{3/2}} \, dx\)

Optimal. Leaf size=94 \[ -\frac{2}{a c^3 \left (a^2 x^2+1\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{\sqrt{\frac{\pi }{2}} S\left (2 \sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a c^3}-\frac{2 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{a c^3} \]

[Out]

-2/(a*c^3*(1 + a^2*x^2)^2*Sqrt[ArcTan[a*x]]) - (Sqrt[Pi/2]*FresnelS[2*Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(a*c^3) -
 (2*Sqrt[Pi]*FresnelS[(2*Sqrt[ArcTan[a*x]])/Sqrt[Pi]])/(a*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.137698, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {4902, 4970, 4406, 3305, 3351} \[ -\frac{2}{a c^3 \left (a^2 x^2+1\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{\sqrt{\frac{\pi }{2}} S\left (2 \sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a c^3}-\frac{2 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{a c^3} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a^2*c*x^2)^3*ArcTan[a*x]^(3/2)),x]

[Out]

-2/(a*c^3*(1 + a^2*x^2)^2*Sqrt[ArcTan[a*x]]) - (Sqrt[Pi/2]*FresnelS[2*Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])/(a*c^3) -
 (2*Sqrt[Pi]*FresnelS[(2*Sqrt[ArcTan[a*x]])/Sqrt[Pi]])/(a*c^3)

Rule 4902

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1)
*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a + b
*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{1}{\left (c+a^2 c x^2\right )^3 \tan ^{-1}(a x)^{3/2}} \, dx &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-(8 a) \int \frac{x}{\left (c+a^2 c x^2\right )^3 \sqrt{\tan ^{-1}(a x)}} \, dx\\ &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{8 \operatorname{Subst}\left (\int \frac{\cos ^3(x) \sin (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{a c^3}\\ &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{8 \operatorname{Subst}\left (\int \left (\frac{\sin (2 x)}{4 \sqrt{x}}+\frac{\sin (4 x)}{8 \sqrt{x}}\right ) \, dx,x,\tan ^{-1}(a x)\right )}{a c^3}\\ &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{\operatorname{Subst}\left (\int \frac{\sin (4 x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{a c^3}-\frac{2 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{a c^3}\\ &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{2 \operatorname{Subst}\left (\int \sin \left (4 x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{a c^3}-\frac{4 \operatorname{Subst}\left (\int \sin \left (2 x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{a c^3}\\ &=-\frac{2}{a c^3 \left (1+a^2 x^2\right )^2 \sqrt{\tan ^{-1}(a x)}}-\frac{\sqrt{\frac{\pi }{2}} S\left (2 \sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{a c^3}-\frac{2 \sqrt{\pi } S\left (\frac{2 \sqrt{\tan ^{-1}(a x)}}{\sqrt{\pi }}\right )}{a c^3}\\ \end{align*}

Mathematica [C]  time = 0.298549, size = 144, normalized size = 1.53 \[ \frac{2 \sqrt{2} \sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-2 i \tan ^{-1}(a x)\right )+2 \sqrt{2} \sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},2 i \tan ^{-1}(a x)\right )+\sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-4 i \tan ^{-1}(a x)\right )+\sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},4 i \tan ^{-1}(a x)\right )-\frac{8}{\left (a^2 x^2+1\right )^2}}{4 a c^3 \sqrt{\tan ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((c + a^2*c*x^2)^3*ArcTan[a*x]^(3/2)),x]

[Out]

(-8/(1 + a^2*x^2)^2 + 2*Sqrt[2]*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-2*I)*ArcTan[a*x]] + 2*Sqrt[2]*Sqrt[I*ArcTa
n[a*x]]*Gamma[1/2, (2*I)*ArcTan[a*x]] + Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-4*I)*ArcTan[a*x]] + Sqrt[I*ArcTan[
a*x]]*Gamma[1/2, (4*I)*ArcTan[a*x]])/(4*a*c^3*Sqrt[ArcTan[a*x]])

________________________________________________________________________________________

Maple [A]  time = 0.112, size = 85, normalized size = 0.9 \begin{align*} -{\frac{1}{4\,a{c}^{3}} \left ( 2\,\sqrt{2}\sqrt{\arctan \left ( ax \right ) }\sqrt{\pi }{\it FresnelS} \left ( 2\,{\frac{\sqrt{2}\sqrt{\arctan \left ( ax \right ) }}{\sqrt{\pi }}} \right ) +8\,\sqrt{\arctan \left ( ax \right ) }\sqrt{\pi }{\it FresnelS} \left ( 2\,{\frac{\sqrt{\arctan \left ( ax \right ) }}{\sqrt{\pi }}} \right ) +4\,\cos \left ( 2\,\arctan \left ( ax \right ) \right ) +\cos \left ( 4\,\arctan \left ( ax \right ) \right ) +3 \right ){\frac{1}{\sqrt{\arctan \left ( ax \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2*c*x^2+c)^3/arctan(a*x)^(3/2),x)

[Out]

-1/4/a/c^3*(2*2^(1/2)*arctan(a*x)^(1/2)*Pi^(1/2)*FresnelS(2*2^(1/2)/Pi^(1/2)*arctan(a*x)^(1/2))+8*arctan(a*x)^
(1/2)*Pi^(1/2)*FresnelS(2*arctan(a*x)^(1/2)/Pi^(1/2))+4*cos(2*arctan(a*x))+cos(4*arctan(a*x))+3)/arctan(a*x)^(
1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^3/arctan(a*x)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^3/arctan(a*x)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{a^{6} x^{6} \operatorname{atan}^{\frac{3}{2}}{\left (a x \right )} + 3 a^{4} x^{4} \operatorname{atan}^{\frac{3}{2}}{\left (a x \right )} + 3 a^{2} x^{2} \operatorname{atan}^{\frac{3}{2}}{\left (a x \right )} + \operatorname{atan}^{\frac{3}{2}}{\left (a x \right )}}\, dx}{c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2*c*x**2+c)**3/atan(a*x)**(3/2),x)

[Out]

Integral(1/(a**6*x**6*atan(a*x)**(3/2) + 3*a**4*x**4*atan(a*x)**(3/2) + 3*a**2*x**2*atan(a*x)**(3/2) + atan(a*
x)**(3/2)), x)/c**3

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a^{2} c x^{2} + c\right )}^{3} \arctan \left (a x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^3/arctan(a*x)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a^2*c*x^2 + c)^3*arctan(a*x)^(3/2)), x)